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Abstract

The Precision Linear Shaped Charge (PLSC) design concept involves the
independent fabrication and assembly of the liner (wedge of PISC), the
tamper/confinement, and explosive. The liner is the most important part of an LSC
and should be fabricated by a more quality controlled, precise process than the
tamper material. Also, this concept allows the liner material to be different from
the tamper material. The explosive can be loaded between the liner and tamper as
the last step in the assembly process rather than the first step as in conventional
LSC designs. PLSC designs are shown to produce incicased jet penetrations in
given targets, more reproducible jet penetration, and more efficient explosive cross
sections using a minimum amount of explosive. The Linear Explosive Shaped
Charge Analysis (LESCA) code developed at Sandia National Laboratories has
been used to assist in the design of PLSCs. LESCA predictions for PLSCjet
penetration in aluminum targets, jet tip velocities and jet-target impact angles are
compared to measured data.
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Precision Linear Shaped Charge Designs
for Severance of Aluminum Materials

Introduction

Sandia National Laboratories (SNL)I-g is involved in the design of Linear Shaped
Charge (LSC) components varying in size from 10 to 10,500 gr/ft. These LSC
components are required to perform such functions as rocket stage separation,
parachute deployment, parachute system release, flight termination, system destruct,
bridge destruction, and system disablement. Most of the LSC compoaents for these
systems require precise and reproducible jet penetration using the minimum
explosive and component weights.

Sandia National Laboratories is currently involved in a task to design Precision
Linear Shaped Charges (PLSC).1-9 The sweeping detonation and 3-dimensional
collapse process of an LSC is a complex phenomenon. The Linear Shaped
Explosive Charge Analysis (LESCA) code was developed at SNL to assist in the
design of PLSC components, Analytical output from the LESCA code is presented
and compared to experimental data for various PLSC designs in the 16 to 10,500
gr/ft explosive loading range. The LESCA code models the motion of the LSC liner
elements due to explosive loading, jet and slug formation, jet breakup, and target
penetration through application of a series of analytical approximations. The
structure of the code is intended to allow flexibility in LSC design, target
configurations, and in modeling techniques. The analytical and experimental data
presented include LSC jet penetration in aluminum targets as a function of standoff,
jet tip velocities and jet-target impact angles.

General Linear Shaped Charge

The parameters or variables for a general linear shaped charge cross section are
illustrated in Figure 1. The large number of variables defining a cross section makes
the design of "the" optimum LSC a very difficult task. Therefore, the scaling of
LSCs is not a simple task. The larger core explosive loading (gr/ft) of similar LSCs
from the same manufacturer do not necessarily produce deeper jet penetrations in a
given target. The generic operational characteristics of an LSC are shown in
Figure 2. A metal tube or sheath containing explosive is formed so that a wedge is
created on one side. The LSC is typically point- or end-initiated and a detonation
wave propagates along the axis. The wedge collapses on itself and forms a high
velocity sheet of jet particles. In general the jet particles are not projected
perpendicular to the original direction of the liner nor is the particle velocity
perpendicular to the jet front.
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The leading, relatively high velocity (3-5 mm/ps), main jet produces most of the jet
penetration into the target. The slower (1-1.5 mm/ps) rear jet or slug is usually
found embedded in the cavity generated in the target by the main jet. Severance of
a finite thickness target results from both the penetration ift• muin jet and the
fracture of the remaining target thickness. The fractui t- .ortion of the severed
thickness usually varies and can be up to 50% depending on the tai'get strength
parameters.

Conventional Linear Shaped Charge

Typically, conventional LSCs are fabricated by loading a cylindrical tube with
granular explosives, and then roll- or swage-forming the loaded tube to the familiar
chevron configuration illustrated in Figure 3.

Some of the disadvantages of conventional LSC designs are as follows:

1. Nonsymmetrical cross section,
2. Nonuniform explosive density,
3. Nonoptimized explosive and sheath cross sections, and
4. Historically designed for nonprecise jet cutting.

The explosive and sheath cross section of a conventional 25 gr/ft, aluminum
sheathed LSC loaded with HNS II explosive is shown in Figure 4. Figure 5
illustrates the test-to-test variations in jet penetration of an aluminum target for the
25 gr/ft LSC shown in Figure 4.

Precision Linear Shaped Charge

For PLSC the liner, explosive, and tamper materials can be assembled as illustrated
in Figure 6. The liner, tamper, and explosive ar, manufactured independently to
allow the required control of fabrication methods which result in a more precise
component. The quality control of the liner is most important in the performance of
LSC devices.

An extruded, machined, buttered, or cast explosive is loaded or assembled between
the liner and tamper components after these other two components are fabricated.
The explosive can be loaded using single or multiple extrusions or by a "buttering"
manual technique, if necessary. Assembly aids, such as the use of vacuum, are also
useful.
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The LESCA code has been used to improve the PLSC parameters. The explosive
charge to liner mass ratio can be designed to optimize the transfer of energy from
the detonation wave through the liner to the high-velocity jet. The explosive charge
to tamper mass ratio can be designed to optimize the tamper material and thickness.
The maximum tamper thickness is defined as that thickness beyond which no
additional gain in the liner collapse velocity is obtained. The tamper can be made
of a different material than that for the liner in order to:

1. Fit different configurations,
2. Allow for buttering of explosive,
3. Allow selection of tamping characteristics in material,
4. Allow for built-in shock mitigation properties, and
5. Allow for a built-in standoff housing free of foreign materials and

water which degrade jet formation.

Linear Explosive Shaped Charge Analysis (LESCA) Code

The Linear Shaped Charge Analysis Program (LSCAP) was renamed the Linear
Explosive Shaped Charge Analysis (LESCA) code. Therefore, throughout this
report, LSCAP and LESCA code modeling, simulation, and predictions are
interchangeable.

The modeling capabilities of the LESCA code include:

1. Sweeping/tangential detonation propagation,
2. Jet-target impact angles,
3. Liner acceleration and velocity,
4, Jet formation process,
5. Jet penetration process including layered targets,
6. Jet breakup stress model, and
7. Target strength modeling.

The code is inexpensive relative to hydrocodes, can be easily used to conduct
parametric studies, and is interactive. The LESCA modeling of half of an LSC cross
section (symmetry is assumed) is illustrated in Figure 7. Figure 8 shows sample
LESCA output illustrating an LSC with a variable standoff to an aluminum target,
sweeping detonation, a jet front envelope of 26.7 degrees, jet particle path relative
to the target, and a comparison of the predicted and experimental target-jet
penetration at 8 and 24 microseconds, respectively.
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The jet tip envelope angle, theta, and jet particle velocity vector angle, alpha, are
shown in Figure 9 for two different LSCs. Measured data from Cordin rotating
mirror camera film records were used in the angle comparisons with LSCAP
(LESCA) code predictions listed in Table I.

Assuming a symmetrical liner collapse process, typical LESCA code graphical
representations are shown in Figure 10 for two different times. The LSC jet, slug,
liner, tamper, and detonation product gases are shown in Figure 10.

LESCA code predicted jet penetration versus standoff data are shown in Figure 11
for configurations with the detonator at the minimum versus maximum standoff as
illustrated in the top half of Figure 11. Experimental data are also compared to the
LESCA code predictions in Figure 11.

"Flange" Type PLSC Results

The "flange "type PSLC design shown in Figure 12 was designed to allow we
extrusion of the LX-13 explosive from one end of the liner and tamper assembly.
The length that can be extruded varies with the area or size of cavity between the
liner and the tamper materials.

25 gr /ft PUCO
The LESCA code jet penetration versus standoff data are compared to measured
data in Figure 13 for the conventional, 25 gr/ft, LX-13 explosive, copper liner,
aluminum tamper LSC cross section shown in the figure. A similar PLSC was
designed to compare jet penetration performance with the conventional LSC shown
in Figure 13. Aluminum liner and tamper materials were used. The liner apex
angle was 90 degrees. The explosive was LX-13 for the PLSC and HNS 11 for the
conventional [SC. The LX-13 and HNS II explosive metal driving ability is about
the same. The measured jet penetration into an aluminum 6061.T6 target versus
standoff data are compared in Figure 14. The PLSC jet penetration was 40%
greater than for the conventional LSC.

A parametric study was conducted incorporating the following variables into the
25 gr/ft, LX-13 explosive, flange PLSC designs similar to Figure 12:

1. Explosives
a. LX-13/XTX-8003/PBXN-301

2. Liner materials
a. Copper
b. Aluminum
c. Nickel
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3. Tamper/confinement material
a. Aluminum

4. PLSC Geometry
a. Liner apex angles (0):

70, 90 and 105 degrees
b. Liner thicknesses (t):

.004, and .010 inches

The PLSC materials, liner thickness (t), and apex angles (0) were varied as listed in
Table I. The PLSC jet tip velocity (Vi), jet envelope angle (0), jet-target impact
angle (a), jet penetration into an aluminum 6061-T6 target (P), and optimum
standoff (S.O.) are listed in Table I. The LESCA predicted data are compared to
the experimental values for most of the parameters. The effect on jet penetration
versus standoff due to variations in some of the PLSC cross-section parameters were
published in Reference 1.

65 gr/ftPL
The 65 gr/ft "flange" type PLSC7 cross section is shown in Figure 15. The jet
penetration into a thick aluminum (6061-T6) target versus standoff data predicted
by the LESCA code are compared to experimental data in Figure 16. The PLSC7
configuration includes a 0.012 inch thick copper liner, LX-13 explosive, and an
aluminum tamper.

"WV' Type PLSC Results

20 gr/ft!.ULC
The "W" type PLSC design shown in Figure 17 was designed to allow the explosive
to be manually loaded in the liner in a buttering technique. This loading technique
is required for relatively small PLSC cross sections where long segments are desired.
The 20 gr/ft PLSC5, LESCA code predicted, jet penetration versus standoff data
are compared to measured data in Figure 17. The PLSC5 configuration includes a
0.008 inch thick copper liner, LX-13 explosive, and aluminum tamper. The apex
angle was 75 degrees.

30 gr/ft PLSC
The "W" type design, 30 gr/ft PLSC6 cross section and copper liner actual cross
section are shown in Figure 18. The LESCA-code-predicted jet penetration into an
aluminum 6061-T6 target versus standoff data are compared to measured data in
Figure 18. The PLSC6 configuration includes a 0.008 inch thick copper liner, LX-13
explosive, an aluminum tamper, and a 77 degree liner apex angle.
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The test-to-test reproducibility for the PLSC6 design is illustrated in Figure 19. The
measured jet penetration versus standoff data are compared for two tests. The
measured jet penetration versus distance along the target data are shown in
Figure 20 for two different tests and for a constant standoff of 0.100 inches.

Conclusions

Precision Linear Shaped Charge liner, tamper, and explosive fabrication processes
have been demonstrated to produce increased jet penetrations in aluminum targets,
more reproducible jet penetrations, and more efficient explosive cross sections
compared to equivalent commercial LSCs.

The LESCA predicted jet tip velocities are within 20% of the experimental values
(Table I). The predicted jet envelope angles relative to the PLSC are within 20% of
the photometrically measured values (Table I). The measured jet-target angles are
within 11% of the predi -ted values (Table I). Data for PLSC jet penetration into an
aluminum target was presented demonstrating a 10% reproducibility for a given test
(Figure 20). Data were presented to illustrate 40% improvement in jet penetration
for a PLSC design compared to an equivalent 25 gr/ft conventional LSC design
(Figure 14).

Jet penetration versus explosive loading data are summarized in Figure 21 and
Table II for the PLSC designs for which data were presented in this report. The
target material was aluminum 6061-T6. The explosive was LX-13. The tamping
material was aluminum, copper or Lexan. The data include both "flange" and "W"
PLSC designs. Both "W" and "flange" PLSC designs performed equally well. Data
for fracture, which is part of the total severance thickness, of the target was not
included in the jet; only penetration data were presented throughout this report.

A parametric study with the LESCA code to determine "the" optimum PLSC design
is very difficult because of the large number of interrelated variables. This does,
however, emphasize the importance of LESCA in obtaining a more optimized
design than is currently available from conventional LSC designs. For a given, new
component, once the customer requirements are defined (constraining or fixing
some PLSC paramters), then the LESCA code can be used to optimize the
remaining parameters.

The PLSC designs similar to those presented here have recently been incorporated
in Sandia National Laboratory (SNL) systems. The Explosive Components
Department plans to use PLSC designs in all future SNL systems requiring jet
severance of materials including metals, Kevlar parachute suspension lines, and
graphite-epoxy motor cases.
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Table 11. PLSC Jet Penetration of Aluminum Target Data

PLSC (gr/ft) EXPLOSIVE TAMPER TARGET P (in) S.O. (in)

0 25 LX-13 Aluminum 6061-T6 0.170 0.100

3 16 LX-13 Aluminum 7075-T6 0.070 0.080

5 20 LX-13 Aluminum 6061-T6 0.130 0.090

6 30 LX-13 Cu/Lexan 6061-T6 0.190 0.100

7 65 LX-13 Aluminum 606 1-T6 0.320 0.137

P - JET PENETRATION DEPTH
S.O. - PLSC STANDOFF FROM TARGET

(gr/ft) - grain/foot EXPLOSIVE LOADING
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•-R4

Tamper

Explosive -5

-R1 H IE

H H
T R02 HIH

Liner RCO- T

RLI = LINER INNER RADIUS
RLO = LINER OUTER RADIUS
RCI = CONFINEMENT/SHEATH INNER RADIUS
RCO = CONFINEMENT/SHEATH OUTER RADIUS
HI = LINER INNER HEIGHT
HA = LINER ACTUAL HEIGHT
H = LINER THEORETICAL APEX HEIGHT
HCI = CONFINEMENT/SHEATH INNER HEIGHT
HCO = CONFINEMENT/SHEATH OUTER HEIGHT
HE = EXPOSIVE HEIGHT
HH = EXPLOSIVE HEIGHT ABOVE APEX
TL LINER THICKNESS
TCO CONFINEMENT/SHEATH THICKNESS
R1 = LINER INNER APEX RADIUS
R2 LINER OUTER APEX RADUS
R3 = CONFINEMENT/SHEATH INNER APEX RADIUS
R4 = CONFINEMENT/SHEATH OUTER APEX RADIUS
% = LINER INNER APEX HALF ANGLE

02 = LINER OUTER APEX HALF ANGLE

03 = CONFINEMENT/SHEATH INNER APEX HALF ANGLE

04 = CONFINEMENT/SHEATH OUTER APEX HALF ANGLE

FIGURE 1. LSC CROSS-SECTION VARIABLES
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